{ "cells": [ { "cell_type": "code", "execution_count": 16, "id": "1408922d-4311-41bf-9467-fe650b14ce8f", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "df_fund = pd.read_excel('Fund.xlsx')\n", "df_manager = pd.read_excel('Manager.xlsx')" ] }, { "cell_type": "code", "execution_count": 17, "id": "6d7abed4-1f1a-45ed-b42e-a545517c9f0b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Fund_Codeinfo.FundIDSymbolStartdateEndDateFundID
0108426.013807838168108426.0
1108426.013816938260108426.0
2108426.013826138352108426.0
3108426.013835338442108426.0
4108426.013844338533108426.0
\n", "
" ], "text/plain": [ " Fund_Codeinfo.FundID Symbol Startdate EndDate FundID\n", "0 108426.0 1 38078 38168 108426.0\n", "1 108426.0 1 38169 38260 108426.0\n", "2 108426.0 1 38261 38352 108426.0\n", "3 108426.0 1 38353 38442 108426.0\n", "4 108426.0 1 38443 38533 108426.0" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_fund['FundID']=df_fund['Fund_Codeinfo.FundID']\n", "df_fund.head()" ] }, { "cell_type": "code", "execution_count": 18, "id": "55761930-8bc3-4f4a-9cd3-5da265dc2ee2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FundIDFundCompanyIDFullNameServiceStartDateServiceEndDate
01084261059王亚伟3716538533
11084261059田擎3798738717
21084261059巩怀志3862640268
31084261059童汀4017941820
41084261059孙振峰4100041455
\n", "
" ], "text/plain": [ " FundID FundCompanyID FullName ServiceStartDate ServiceEndDate\n", "0 108426 1059 王亚伟 37165 38533\n", "1 108426 1059 田擎 37987 38717\n", "2 108426 1059 巩怀志 38626 40268\n", "3 108426 1059 童汀 40179 41820\n", "4 108426 1059 孙振峰 41000 41455" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_manager.head()" ] }, { "cell_type": "code", "execution_count": 19, "id": "7a383e87-42f4-4e10-965f-af084b2dd66e", "metadata": {}, "outputs": [], "source": [ "df_all = pd.merge(df_fund, df_manager, how='left')" ] }, { "cell_type": "code", "execution_count": 20, "id": "a2e47bb0-f20c-4e29-8f10-f9d7df8a9d59", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Fund_Codeinfo.FundIDSymbolStartdateEndDateFundIDFundCompanyIDFullNameServiceStartDateServiceEndDate
0108426.013807838168108426.01059.0王亚伟37165.038533.0
1108426.013807838168108426.01059.0田擎37987.038717.0
2108426.013807838168108426.01059.0巩怀志38626.040268.0
3108426.013807838168108426.01059.0童汀40179.041820.0
4108426.013807838168108426.01059.0孙振峰41000.041455.0
\n", "
" ], "text/plain": [ " Fund_Codeinfo.FundID Symbol ... ServiceStartDate ServiceEndDate\n", "0 108426.0 1 ... 37165.0 38533.0\n", "1 108426.0 1 ... 37987.0 38717.0\n", "2 108426.0 1 ... 38626.0 40268.0\n", "3 108426.0 1 ... 40179.0 41820.0\n", "4 108426.0 1 ... 41000.0 41455.0\n", "\n", "[5 rows x 9 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_all.head()" ] }, { "cell_type": "code", "execution_count": 29, "id": "53897d56-6ad2-4e9b-9a58-4d59e38a20f2", "metadata": {}, "outputs": [], "source": [ "identifiers_test = 'Startdate >= ServiceStartDate and EndDate <= ServiceEndDate'\n", "df_test = df_all.query(identifiers_test)" ] }, { "cell_type": "code", "execution_count": 31, "id": "bc60ced8-60ae-4d92-b681-e6a107c597f4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Fund_Codeinfo.FundIDSymbolStartdateEndDateFundIDFundCompanyIDFullNameServiceStartDateServiceEndDate
0108426.013807838168108426.01059.0王亚伟37165.038533.0
1108426.013807838168108426.01059.0田擎37987.038717.0
14108426.013816938260108426.01059.0王亚伟37165.038533.0
15108426.013816938260108426.01059.0田擎37987.038717.0
28108426.013826138352108426.01059.0王亚伟37165.038533.0
29108426.013826138352108426.01059.0田擎37987.038717.0
42108426.013835338442108426.01059.0王亚伟37165.038533.0
43108426.013835338442108426.01059.0田擎37987.038717.0
56108426.013844338533108426.01059.0王亚伟37165.038533.0
57108426.013844338533108426.01059.0田擎37987.038717.0
71108426.013853438625108426.01059.0田擎37987.038717.0
85108426.013862638717108426.01059.0田擎37987.038717.0
86108426.013862638717108426.01059.0巩怀志38626.040268.0
100108426.013871838807108426.01059.0巩怀志38626.040268.0
114108426.013880838898108426.01059.0巩怀志38626.040268.0
128108426.013889938990108426.01059.0巩怀志38626.040268.0
142108426.013899139082108426.01059.0巩怀志38626.040268.0
156108426.013908339172108426.01059.0巩怀志38626.040268.0
170108426.013917339263108426.01059.0巩怀志38626.040268.0
184108426.013926439355108426.01059.0巩怀志38626.040268.0
\n", "
" ], "text/plain": [ " Fund_Codeinfo.FundID Symbol ... ServiceStartDate ServiceEndDate\n", "0 108426.0 1 ... 37165.0 38533.0\n", "1 108426.0 1 ... 37987.0 38717.0\n", "14 108426.0 1 ... 37165.0 38533.0\n", "15 108426.0 1 ... 37987.0 38717.0\n", "28 108426.0 1 ... 37165.0 38533.0\n", "29 108426.0 1 ... 37987.0 38717.0\n", "42 108426.0 1 ... 37165.0 38533.0\n", "43 108426.0 1 ... 37987.0 38717.0\n", "56 108426.0 1 ... 37165.0 38533.0\n", "57 108426.0 1 ... 37987.0 38717.0\n", "71 108426.0 1 ... 37987.0 38717.0\n", "85 108426.0 1 ... 37987.0 38717.0\n", "86 108426.0 1 ... 38626.0 40268.0\n", "100 108426.0 1 ... 38626.0 40268.0\n", "114 108426.0 1 ... 38626.0 40268.0\n", "128 108426.0 1 ... 38626.0 40268.0\n", "142 108426.0 1 ... 38626.0 40268.0\n", "156 108426.0 1 ... 38626.0 40268.0\n", "170 108426.0 1 ... 38626.0 40268.0\n", "184 108426.0 1 ... 38626.0 40268.0\n", "\n", "[20 rows x 9 columns]" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_test.head(n=20)" ] }, { "cell_type": "code", "execution_count": 32, "id": "9964f2ab-877f-4707-9983-4ec1fcaf9847", "metadata": {}, "outputs": [], "source": [ "df_test.to_csv('df_test.csv',index = False, encoding='utf_8_sig')" ] }, { "cell_type": "code", "execution_count": null, "id": "ba4ac974-b01e-4269-9988-540e0c11d65a", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "c942eb9d-e770-4071-bc2c-874b791e4ed0", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "81e449d3-8d39-453b-8840-91e75f3f323e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "5d9fe387-e77c-4f7c-ad30-6c2d8e3353df", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "deb35b45-33fb-43db-b0c3-4acc5f35cb93", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "b3c2c224-52c5-40c4-9163-2f40b12e331b", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 17, "id": "21edd89a-9c9d-4a35-8ba1-2638fac2f413", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2AV9V186V187V192
020204723
1202037110
220204725
320203718
420204731
\n", "
" ], "text/plain": [ " V2 V2A V9 V186 V187 V192\n", "0 20 20 4 7 2 3\n", "1 20 20 3 7 1 10\n", "2 20 20 4 7 2 5\n", "3 20 20 3 7 1 8\n", "4 20 20 4 7 3 1" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "cols = ['V2','V2A','V9','V186','V187','V192']\n", "df_wv = pd.read_excel('WV5_Data_Spss_v20180912.xlsx',header=0, usecols=cols)\n", "df_wv.head()" ] }, { "cell_type": "code", "execution_count": 20, "id": "0b30ce3e-4a19-4430-8594-124121470fd7", "metadata": {}, "outputs": [], "source": [ "df_melt = df_wv.melt(id_vars=['V2','V2A'],value_vars=['V9','V186','V187','V192'])" ] }, { "cell_type": "code", "execution_count": 21, "id": "2afcf31b-2380-4b9c-a07c-d4765cd572b9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevalue
02020V94
12020V93
22020V94
32020V93
42020V94
\n", "
" ], "text/plain": [ " V2 V2A variable value\n", "0 20 20 V9 4\n", "1 20 20 V9 3\n", "2 20 20 V9 4\n", "3 20 20 V9 3\n", "4 20 20 V9 4" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_melt.head()" ] }, { "cell_type": "code", "execution_count": 37, "id": "66d4bbd4-57c1-4214-bf5a-9f4157455faf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount
02020V186-25
12020V186111
22020V186250
32020V186356
42020V1864125
\n", "
" ], "text/plain": [ " V2 V2A variable value count\n", "0 20 20 V186 -2 5\n", "1 20 20 V186 1 11\n", "2 20 20 V186 2 50\n", "3 20 20 V186 3 56\n", "4 20 20 V186 4 125" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t1 = df_melt.groupby(['V2','V2A','variable','value']).agg('size').reset_index(name='count')\n", "df_t1.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "65e18586-c3c7-44fb-9704-7054eb8262a5", "metadata": {}, "outputs": [], "source": [ "df_t2 = df_t1.groupby(['V2','V2A','variable']).agg({'count': 'sum'})\n", "df_t2.head()" ] }, { "cell_type": "code", "execution_count": 43, "id": "536fcf9a-aba6-4dc9-9c65-5e01a4b9a7bf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount_xcount_y
02020V186-251003
12020V1861111003
22020V1862501003
32020V1863561003
42020V18641251003
\n", "
" ], "text/plain": [ " V2 V2A variable value count_x count_y\n", "0 20 20 V186 -2 5 1003\n", "1 20 20 V186 1 11 1003\n", "2 20 20 V186 2 50 1003\n", "3 20 20 V186 3 56 1003\n", "4 20 20 V186 4 125 1003" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_tt = pd.merge(df_t1,df_t2,on=['V2','V2A','variable'],how='left')\n", "df_tt.head()" ] }, { "cell_type": "code", "execution_count": 44, "id": "6190a9e9-516b-4b73-a837-3b9c5a775e75", "metadata": {}, "outputs": [], "source": [ "df_tt['percent']= df_tt['count_x']/df_tt['count_y']" ] }, { "cell_type": "code", "execution_count": 45, "id": "14b79b6a-20bb-49f7-97fe-6e83c7896190", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount_xcount_ypercent
02020V186-2510030.004985
12020V18611110030.010967
22020V18625010030.049850
32020V18635610030.055833
42020V186412510030.124626
\n", "
" ], "text/plain": [ " V2 V2A variable value count_x count_y percent\n", "0 20 20 V186 -2 5 1003 0.004985\n", "1 20 20 V186 1 11 1003 0.010967\n", "2 20 20 V186 2 50 1003 0.049850\n", "3 20 20 V186 3 56 1003 0.055833\n", "4 20 20 V186 4 125 1003 0.124626" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_tt.head()" ] }, { "cell_type": "code", "execution_count": 48, "id": "748e87fc-d74d-46ec-8dde-f354d08dfcda", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount_xcount_ypercent
12020V18611110030.010967
313232V18615710020.056886
623636V18615614210.039409
907676V186133515000.223333
119100100V18611310010.012987
150124124V186113321640.061460
182152152V18617010000.070000
214156156V18612219910.011050
244158158V18614112270.033415
271170170V186132630250.107769
295196196V18614410500.041905
322231231V186155915000.372667
352246246V18611910140.018738
386250250V18611610010.015984
416268268V18615715000.038000
449276900V1861159880.015182
483276901V1861510760.004647
514288288V186169215340.451108
544320320V186133910000.339000
572344344V18616912520.055112
601348348V18611410070.013903
633356356V186142720010.213393
658360360V186159920150.297270
692364364V186154126670.202850
722368368V186141827010.154757
754380380V18617410120.073123
785392392V18611910960.017336
830410410V186122812000.190000
858458458V186180912010.673605
886466466V186186115340.561278
920484484V186118615600.119231
950498498V18614710460.044933
980504504V1861101412000.845000
1009528528V18612510500.023810
1043554554V1861469540.048218
1075578578V1861810250.007805
1104604604V186115615000.104000
1133616616V18619110000.091000
1164642642V18617817760.043919
1197643643V18611920330.009346
1230646646V1861123815070.821500
1260688688V18615212200.042623
1293704704V18612714950.018060
1328705705V18611610370.015429
1358710710V186148729880.162985
1388724724V18612012000.016667
1421752752V1861510030.004985
1450756756V18613312410.026591
1482764764V186134815340.226858
1510780780V186118410020.183633
1543792792V186118413460.136701
1576804804V18612210000.022000
1608818818V186173730510.241560
1635826826V18617410410.071085
1669840840V186114712490.117694
1698854854V186183915340.546936
1732858858V18614310000.043000
1759894894V186141315000.275333
\n", "
" ], "text/plain": [ " V2 V2A variable value count_x count_y percent\n", "1 20 20 V186 1 11 1003 0.010967\n", "31 32 32 V186 1 57 1002 0.056886\n", "62 36 36 V186 1 56 1421 0.039409\n", "90 76 76 V186 1 335 1500 0.223333\n", "119 100 100 V186 1 13 1001 0.012987\n", "150 124 124 V186 1 133 2164 0.061460\n", "182 152 152 V186 1 70 1000 0.070000\n", "214 156 156 V186 1 22 1991 0.011050\n", "244 158 158 V186 1 41 1227 0.033415\n", "271 170 170 V186 1 326 3025 0.107769\n", "295 196 196 V186 1 44 1050 0.041905\n", "322 231 231 V186 1 559 1500 0.372667\n", "352 246 246 V186 1 19 1014 0.018738\n", "386 250 250 V186 1 16 1001 0.015984\n", "416 268 268 V186 1 57 1500 0.038000\n", "449 276 900 V186 1 15 988 0.015182\n", "483 276 901 V186 1 5 1076 0.004647\n", "514 288 288 V186 1 692 1534 0.451108\n", "544 320 320 V186 1 339 1000 0.339000\n", "572 344 344 V186 1 69 1252 0.055112\n", "601 348 348 V186 1 14 1007 0.013903\n", "633 356 356 V186 1 427 2001 0.213393\n", "658 360 360 V186 1 599 2015 0.297270\n", "692 364 364 V186 1 541 2667 0.202850\n", "722 368 368 V186 1 418 2701 0.154757\n", "754 380 380 V186 1 74 1012 0.073123\n", "785 392 392 V186 1 19 1096 0.017336\n", "830 410 410 V186 1 228 1200 0.190000\n", "858 458 458 V186 1 809 1201 0.673605\n", "886 466 466 V186 1 861 1534 0.561278\n", "920 484 484 V186 1 186 1560 0.119231\n", "950 498 498 V186 1 47 1046 0.044933\n", "980 504 504 V186 1 1014 1200 0.845000\n", "1009 528 528 V186 1 25 1050 0.023810\n", "1043 554 554 V186 1 46 954 0.048218\n", "1075 578 578 V186 1 8 1025 0.007805\n", "1104 604 604 V186 1 156 1500 0.104000\n", "1133 616 616 V186 1 91 1000 0.091000\n", "1164 642 642 V186 1 78 1776 0.043919\n", "1197 643 643 V186 1 19 2033 0.009346\n", "1230 646 646 V186 1 1238 1507 0.821500\n", "1260 688 688 V186 1 52 1220 0.042623\n", "1293 704 704 V186 1 27 1495 0.018060\n", "1328 705 705 V186 1 16 1037 0.015429\n", "1358 710 710 V186 1 487 2988 0.162985\n", "1388 724 724 V186 1 20 1200 0.016667\n", "1421 752 752 V186 1 5 1003 0.004985\n", "1450 756 756 V186 1 33 1241 0.026591\n", "1482 764 764 V186 1 348 1534 0.226858\n", "1510 780 780 V186 1 184 1002 0.183633\n", "1543 792 792 V186 1 184 1346 0.136701\n", "1576 804 804 V186 1 22 1000 0.022000\n", "1608 818 818 V186 1 737 3051 0.241560\n", "1635 826 826 V186 1 74 1041 0.071085\n", "1669 840 840 V186 1 147 1249 0.117694\n", "1698 854 854 V186 1 839 1534 0.546936\n", "1732 858 858 V186 1 43 1000 0.043000\n", "1759 894 894 V186 1 413 1500 0.275333" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tt_query = \"variable == 'V186' and value == 1 \"\n", "df_tt.query(tt_query)" ] }, { "cell_type": "code", "execution_count": 57, "id": "e5da4408-de69-4a79-8585-aaff547abfe3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount_xcount_ypercent
12020V18611110030.010967
272020V917910030.078764
282020V9220510030.204387
313232V18615710020.056886
573232V9131510020.314371
........................
1755858858V9122610000.226000
1756858858V9223010000.230000
1759894894V186141315000.275333
1786894894V91113415000.756000
1787894894V9224415000.162667
\n", "

174 rows × 7 columns

\n", "
" ], "text/plain": [ " V2 V2A variable value count_x count_y percent\n", "1 20 20 V186 1 11 1003 0.010967\n", "27 20 20 V9 1 79 1003 0.078764\n", "28 20 20 V9 2 205 1003 0.204387\n", "31 32 32 V186 1 57 1002 0.056886\n", "57 32 32 V9 1 315 1002 0.314371\n", "... ... ... ... ... ... ... ...\n", "1755 858 858 V9 1 226 1000 0.226000\n", "1756 858 858 V9 2 230 1000 0.230000\n", "1759 894 894 V186 1 413 1500 0.275333\n", "1786 894 894 V9 1 1134 1500 0.756000\n", "1787 894 894 V9 2 244 1500 0.162667\n", "\n", "[174 rows x 7 columns]" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tt_query = \"variable == 'V186' and value == 1 | variable == 'V9' and value == [1,2]\"\n", "df_tt.query(tt_query)" ] }, { "cell_type": "code", "execution_count": 61, "id": "4c8fa8bc-10f6-4101-a3f3-6271a4b6c4a8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
percent
V2V2Avariable
2020V1860.010967
V90.283151
3232V1860.056886
V90.632735
3636V1860.039409
\n", "
" ], "text/plain": [ " percent\n", "V2 V2A variable \n", "20 20 V186 0.010967\n", " V9 0.283151\n", "32 32 V186 0.056886\n", " V9 0.632735\n", "36 36 V186 0.039409" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t_final = df_tt.query(tt_query)\n", "# df_final_new = df_t_final.groupby(['V2','V2A','variable']).agg({'percent': 'sum'})\n", "# df_final_new.head()" ] }, { "cell_type": "code", "execution_count": 62, "id": "c1ee9e45-fecd-41b1-925d-0fda25b8866f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablevaluecount_xcount_ypercent
12020V18611110030.010967
272020V917910030.078764
282020V9220510030.204387
313232V18615710020.056886
573232V9131510020.314371
\n", "
" ], "text/plain": [ " V2 V2A variable value count_x count_y percent\n", "1 20 20 V186 1 11 1003 0.010967\n", "27 20 20 V9 1 79 1003 0.078764\n", "28 20 20 V9 2 205 1003 0.204387\n", "31 32 32 V186 1 57 1002 0.056886\n", "57 32 32 V9 1 315 1002 0.314371" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t_final.head()" ] }, { "cell_type": "code", "execution_count": 63, "id": "cdc955e2-3c40-41e4-82c6-7517ec453f63", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
percent
V2V2Avariable
2020V1860.010967
V90.283151
3232V1860.056886
V90.632735
3636V1860.039409
............
854854V90.947849
858858V1860.043000
V90.456000
894894V1860.275333
V90.918667
\n", "

116 rows × 1 columns

\n", "
" ], "text/plain": [ " percent\n", "V2 V2A variable \n", "20 20 V186 0.010967\n", " V9 0.283151\n", "32 32 V186 0.056886\n", " V9 0.632735\n", "36 36 V186 0.039409\n", "... ...\n", "854 854 V9 0.947849\n", "858 858 V186 0.043000\n", " V9 0.456000\n", "894 894 V186 0.275333\n", " V9 0.918667\n", "\n", "[116 rows x 1 columns]" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t_final.groupby(['V2','V2A','variable']).agg({'percent': 'sum'})" ] }, { "cell_type": "code", "execution_count": 64, "id": "28efd42b-666a-49fc-96c1-9296dff91505", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
percent
V2V2Avariable
2020V1860.010967
V90.283151
3232V1860.056886
V90.632735
3636V1860.039409
\n", "
" ], "text/plain": [ " percent\n", "V2 V2A variable \n", "20 20 V186 0.010967\n", " V9 0.283151\n", "32 32 V186 0.056886\n", " V9 0.632735\n", "36 36 V186 0.039409" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_new = df_t_final.groupby(['V2','V2A','variable']).agg({'percent': 'sum'})\n", "df_final_new.head()" ] }, { "cell_type": "code", "execution_count": 91, "id": "a0f19f13-c75d-47f1-af35-8786214a93b1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V2V2Avariablepercent
02020V1860.010967
12020V90.283151
23232V1860.056886
33232V90.632735
43636V1860.039409
\n", "
" ], "text/plain": [ " V2 V2A variable percent\n", "0 20 20 V186 0.010967\n", "1 20 20 V9 0.283151\n", "2 32 32 V186 0.056886\n", "3 32 32 V9 0.632735\n", "4 36 36 V186 0.039409" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# df_final_new对variable进行行透视成列,variable的value放到列名去。\n", "df_final_melt = df_final_new.reset_index()\n", "df_final_melt.head()" ] }, { "cell_type": "code", "execution_count": 97, "id": "e03ff0f6-6096-4d73-a5a7-add89cc53a13", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
variableV186V9
V2V2A
20200.0109670.283151
32320.0568860.632735
36360.0394090.387051
76760.2233330.912667
1001000.0129870.490509
1241240.0614600.617375
1521520.0700000.701000
1561560.0110500.162732
1581580.0334150.509372
1701700.107769NaN
1961960.0419050.770476
2312310.3726670.936667
2462460.0187380.450690
2502500.0159840.410589
2682680.0380000.964000
2769000.0151820.440283
9010.0046470.225836
2882880.4511080.973272
3203200.3390000.953000
3443440.0551120.270767
3483480.0139030.367428
3563560.2133930.779610
3603600.2972700.980149
3643640.2028500.943382
3683680.1547570.989263
3803800.0731230.751976
3923920.0173360.173358
400400NaN0.995833
4104100.1900000.480833
4584580.6736050.959201
4664660.5612780.964798
4844840.1192310.846154
4984980.0449330.728489
5045040.8450000.984167
5285280.0238100.320952
5545540.0482180.342767
5785780.0078050.327805
6046040.1040000.760667
6166160.0910000.851000
6426420.0439190.890203
6436430.0093460.457452
6466460.8215000.956204
6886880.0426230.655738
7047040.0180600.323746
7057050.0154290.423337
7107100.1629850.910643
7247240.0166670.389167
7527520.0049850.294118
7567560.0265910.460113
7647640.2268580.937419
7807800.1836330.901198
7927920.1367010.913076
8048040.0220000.536000
8188180.2415600.996067
8268260.0710850.392891
8408400.1176940.720576
8548540.5469360.947849
8588580.0430000.456000
8948940.2753330.918667
\n", "
" ], "text/plain": [ "variable V186 V9\n", "V2 V2A \n", "20 20 0.010967 0.283151\n", "32 32 0.056886 0.632735\n", "36 36 0.039409 0.387051\n", "76 76 0.223333 0.912667\n", "100 100 0.012987 0.490509\n", "124 124 0.061460 0.617375\n", "152 152 0.070000 0.701000\n", "156 156 0.011050 0.162732\n", "158 158 0.033415 0.509372\n", "170 170 0.107769 NaN\n", "196 196 0.041905 0.770476\n", "231 231 0.372667 0.936667\n", "246 246 0.018738 0.450690\n", "250 250 0.015984 0.410589\n", "268 268 0.038000 0.964000\n", "276 900 0.015182 0.440283\n", " 901 0.004647 0.225836\n", "288 288 0.451108 0.973272\n", "320 320 0.339000 0.953000\n", "344 344 0.055112 0.270767\n", "348 348 0.013903 0.367428\n", "356 356 0.213393 0.779610\n", "360 360 0.297270 0.980149\n", "364 364 0.202850 0.943382\n", "368 368 0.154757 0.989263\n", "380 380 0.073123 0.751976\n", "392 392 0.017336 0.173358\n", "400 400 NaN 0.995833\n", "410 410 0.190000 0.480833\n", "458 458 0.673605 0.959201\n", "466 466 0.561278 0.964798\n", "484 484 0.119231 0.846154\n", "498 498 0.044933 0.728489\n", "504 504 0.845000 0.984167\n", "528 528 0.023810 0.320952\n", "554 554 0.048218 0.342767\n", "578 578 0.007805 0.327805\n", "604 604 0.104000 0.760667\n", "616 616 0.091000 0.851000\n", "642 642 0.043919 0.890203\n", "643 643 0.009346 0.457452\n", "646 646 0.821500 0.956204\n", "688 688 0.042623 0.655738\n", "704 704 0.018060 0.323746\n", "705 705 0.015429 0.423337\n", "710 710 0.162985 0.910643\n", "724 724 0.016667 0.389167\n", "752 752 0.004985 0.294118\n", "756 756 0.026591 0.460113\n", "764 764 0.226858 0.937419\n", "780 780 0.183633 0.901198\n", "792 792 0.136701 0.913076\n", "804 804 0.022000 0.536000\n", "818 818 0.241560 0.996067\n", "826 826 0.071085 0.392891\n", "840 840 0.117694 0.720576\n", "854 854 0.546936 0.947849\n", "858 858 0.043000 0.456000\n", "894 894 0.275333 0.918667" ] }, "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_melt.set_index([\"V2\", \"V2A\",\"variable\"])[\"percent\"].unstack()" ] }, { "cell_type": "code", "execution_count": null, "id": "ce7f4e1f-1368-4c8b-90b8-24c27d6ced07", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.11" } }, "nbformat": 4, "nbformat_minor": 5 }